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Abstract

For statistically independent emission, a closed form of the distribution function
for MpT , the event-by-event average pT , can be obtained. A recent NA49 measure-
ment satisfies this conditions and a distribution is obtained which is in excellent
agreement with the NA49 measurement.
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Recently, the NA49 experiment [1] has presented a measurement of the distri-
bution of MpT , the event-by-event average transverse momentum, for central
Pb+Pb collisions at 158 GeV per nucleon. A total of 98426 events was recorded
with an average of 270.13 ± 0.07 particles per event and an r.m.s. deviation
about the average of 23.29 ± 0.05 particles. NA49 make several important
observations, including: the distribution of MpT is approximately Gaussian;
a mixed event sample reproduces the actual data to high precision; the indi-
vidual samples, pT i, on a given event are compatible with being statistically
independent. It is precisely for such conditions that an analytical formula for
the distribution in MpT can be obtained. The result is shown in Fig. 1, in
excellent agreement with the NA49 measurement [1]. The derivation follows.

In the theory of probability and statistics, a statistic is a quantity computed
entirely from the sample, i.e. a statistic is any function of the observed sample
values. Two of the most popular statistics are the sum and the average:

Sn ≡
n∑
i=1

xi (1)

x̄(n) ≡
1

n

n∑
i=1

xi =
1

n
Sn (2)
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Fig. 1. Full distribution in MpT (light line) compared to NA49 measurement (filled
points) and mixed event distribution (histogram). See reference [1] for details of the
measurement. Details of the present calculation are given in the text.

where the xi are n samples from a the same population or probability density
function, f(x). From the theory of mathematical statistics[2], the probability
distribution of a random variable Sn, which is itself the sum of n independent
random variables with a common distribution f(x):

Sn = x1 + x2 + · · ·+ xn (3)
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is given by fn(x), the n-fold convolution of the distribution f(x):

fn(x) =

x∫
0

dy f(y) fn−1(x− y) . (4)

The mean, µn = 〈Sn〉, and standard deviation, σn, of the n-fold convolution
obey the familiar rule

µn = nµ σn = σ
√
n , (5)

where µ and σ are the mean and standard deviation of the distribution f(x).
A complementary case is that of a random variable Zn, which is the sum of
n random variables with a common distribution f(x)—which are themselves
100% correlated—for example:

Zn = x+ x+ · · ·+ x = nx . (6)

This is just a scale transformation. The behavior of the mean and the stan-
dard deviation for a scale transformation is µ → nµ, σ → nσ , which is
quite different than the behavior of the standard deviation under convolution
(Eq. 5).

The Gamma distribution is an example of a probability density function (pdf)
which has particularly simple properties under convolutions and scale trans-
formations. The Gamma distribution is a function of a continuous variable x
and has paramters p and b

f(x) = fΓ(x, p, b) =
b

Γ(p)
(bx)p−1e−bx (7)

where

p > 0, b > 0, 0 ≤ x ≤ ∞

Γ(p) = (p− 1)! if p is an integer, and f(x) is normalized,
∫∞
0 f(x)dx = 1. The

mean and standard deviation of the distribution are

µ ≡ 〈x〉 =
p

b
σ ≡

√
〈x2〉 − 〈x〉2 =

√
p

b

σ2

µ2
=

1

p
. (8)

The n-fold convolution of the Gamma distribution (Eq. 7) is simply given by
the function

fn(x) =
b

Γ(np)
(bx)np−1e−bx = fΓ(x, np, b) (9)

i.e. p → np and b remains unchanged. Note that the mean and standard
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deviation of Eq. 9

µn =
np

b
σn =

√
np

b

σn

µn
=

1
√
np

(10)

when compared to Eq. 8 explicitly obey Eq. 5. The result of a scale transfor-
mation x→ nx for a Gamma distribution (Eq. 7) is simply b→ b/n, with p re-
maining unchanged. To summarize, the n-th convolution of the Gamma distri-
bution fΓ(x, p, b) is fΓ(x, np, b); the scale transformation x→ nx of fΓ(x, p, b)
is fΓ(x, p, b/n).

The principal advantage of the Gamma distribution for the present problem
is that it is one of the standard representations of the inclusive single particle
pT distribution:

dσ

pTdpT
= b2e−bpT (11)

dσ

dpT
= b2pT e

−bpT . (12)

Clearly, Eq.s 11, 12 represent a Gamma distribution with p = 2, 〈pT 〉 =
2/b, where typically b = 6 (GeV/c)−1 for p-p collisions. The ‘inverse slope
parameter’ 1/b is sometimes referred to as the ‘Temperature parameter’.

The NA49 [1] event-by-event variable, which they denote MpT , is just the
event-by-event average transverse momentum

MpT = pT (n) =
1

n

n∑
i=1

pTi =
1

n
ETc (13)

where

ETc =
n∑
i=1

pTi , (14)

pTi is the magnitude of the transverse momentum for the i-th charged par-
ticle in an event and n is the number of accepted charged particles for the
event. Cognoscente will recognize Eq. 14 as the event-by-event variable ‘ET ’
for charged particles [3]. The solution for the probability distribution func-
tion for MpT (Eq. 13) follows from Eqs. 3 and 4 if the particles on a given
event are independently emitted. Taking the pT distribution for a single par-
ticle as Eq. 7, fΓ(x, p, b), the ETc distribution for n independent particles is
the n-th convolution, fΓ(ETc, np, b). Finally, the relation between ETc and
MpT = ETc/n is just a scale change x→ x/n so the final distribution for MpT

is fΓ(MpT , np, nb),

f(y) = fΓ(y, np, nb) =
nb

Γ(np)
(nby)np−1e−nby (15)
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where the variable y represents MpT . The mean and standard deviation of the
distribution in MpT are:

µMpT
=
np

nb
=
p

b
= 〈pT 〉 σMpT

=

√
np

nb
=
σpT√
n

σMpT

µMpT

=
1
√
np

. (16)

Strictly speaking, this is valid for fixed n, but we ignore this for the moment.

NA49 [1] give values of 〈pT 〉 = 0.37675±0.00006 GeV/c, σpT = 0.2822±0.0001
GeV/c for the inclusive average over all accepted particles and all events. These
two moments are sufficient to obtain the b and p parameters of the semi-
inclusive single particle pT distribution, assumed to be of the form fΓ(x, p, b)
(Eqs. 7, 8):

p =
〈pT 〉2

σ2
pT

= 1.782± 0.001 (17)

b =
〈pT 〉

σ2
pT

= 4.730± 0.002 (GeV/c)−1 . (18)

The derived p parameter of 1.782 for the semi-inclusive pT distribution does
not equal to 2, as expected from Eq. 12, but is reasonably close considering
that the quoted NA49 averages and standard deviations are for a truncated
range, 0.005 < pT < 1.5 GeV/c, and not for the full distribution. Using the
predicted distribution for MpT for the case of independent emission (Eqs. 15,
16), the standard deviation of MpT can be computed from the number of
particles per event n (assumed fixed at the average) and the parameters b and
p of the semi-inclusive distribution:

σMpT

µMpT

=
1
√
np

= 4.56% . (19)

This value of 4.56% for σMpT
/µMpT

is in excellent agreement with, although
slightly smaller than the measured value of 4.65±0.01%, leaving scant room for
possible correlation effects which would destroy the statistical independence.

The distribution in MpT (Eq. 15) for a fixed value of n = 〈n〉 = 270.13 is
shown in Fig. 2 using the values of p and b (Eqs. 17, 18) derived from the
semi-inclusive pT distribution where the plot is normalized to 98426 events
(dashed curve). The full distribution in MpT from Fig. 1, properly averaged
over the variation in n, is also shown (solid curve). The distribution with fixed
n = 〈n〉 is slightly narrower and barely distinguishable by eye from the fullMpT

distribution and both are strikingly in agreement with the NA49 measurement
(recall Fig. 1). The detailed difference between a Gamma distribution and a
Gaussian is illustrated in Fig. 3 where a Gaussian with the same mean and σ
as the Gamma distribution with fixed n = 〈n〉 is superimposed onto Fig. 1 (see
Fig. 3). Perhaps very trained eyes will note that the upper edges of the Gamma
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Fig. 2. The calculated MpT distribution for independent emission of a fixed number
n = 270.13 particles on an event (Eq. 15) using the parameters b = 4.730 GeV−1 and
p = 1.782 derived from the mean and standard deviation of the semi-inclusive pT
distribution, averaged over all events, (dashed line) compared to the full distribution
in MpT , properly averaged over the variation in n, from Fig. 1 (solid line). Following
NA49 [1], the distribution is given in events per 0.0025 GeV/c bin, normalized to a
total number of 98426 events.

distribution curve and the data are straight lines (on the semi-log plot) for

MpT
>
∼ 0.42, illustrating the asymptotic exponential slope characteristic of a

Gamma distribution, while the Gaussian is parabolic in shape and falls below
the data. This suggests an additional test for statistical independence of n
particles emitted on a given event: the asymptotic ‘inverse slope parameter’ of
the distribution in MpT , 1/nb, should be 1/n times the semi-inclusive inverse
slope parameter, 1/b. It is also clear that a statistical test to reject one of the
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two curves would require an additional order of magnitude in data.
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Fig. 3. From Fig. 1, full distribution in MpT (light line) compared to NA49 mea-
surement (filled points) and mixed event distribution (histogram) compared to a
Gaussian (darker line) with the same mean and σ as the Gamma distribution with
fixed n = 270.13 from Fig. 2.

The derivation of the full distribution, where the variation of n is taken into
account, is straightforward but requires significant additional computation.
First, the sensitivity of the distribution of MpT to different values of fixed n is
shown in Fig 4 for three fixed values of n: n = 〈n〉 = 270.13, and n=240, 300,
each approximately 1.5 standard deviations from the mean multiplicity per
event. The distributions are very similar but can be clearly distinguished. The
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Fig. 4. Distribution in MpT for 3 fixed values of n: n = 〈n〉 = 270.13 (dashes),
n = 300 (dotdash), n = 240 (dots).

full distribution in MpT , averaged over the NA49 multiplicity distribution for
central collisions, is obtained by assuming that the multiplicity distribution is
Negative Binomial [4,5]:

P (n) = fNBD(n, 1/k, µ) =
(n+ k − 1)!

n!(k − 1)!

(µ
k
)n

(1 + µ
k
)n+k

(20)

where P (n) is normalized for 0 ≤ n ≤ ∞, µ ≡ 〈n〉, and the standard deviation
is:

σ =

√
µ(1 +

µ

k
)

σ2

µ2
=

1

µ
+

1

k
. (21)

8



The NBD parameter 1/k for NA49 central Pb+Pb collisions can be calculated
from the quoted 〈n〉 = 270.13± 0.07 and σ = 23.39± 0.05, yielding:

1

k
=

σ2

〈n〉2
−

1

〈n〉
= 0.00373± 0.00002 . (22)

The distribution in MpT for fixed n, fΓ(y, np, nb), is then averaged over the
central collision multiplicity distribution, fNBD(n, 1/k, 〈n〉), to obtain:

f(y) =
nmax∑
n=nmin

fNBD(n, 1/k, 〈n〉) fΓ(y, np, nb) . (23)

This is the full distribution in MpT for NBD distributed event-by-event mul-
tiplicity, with Gamma distributed semi-inclusive pT spectrum, assuming sta-
tistically independent emission of particles on each event. It depends on the
4 semi-inclusive paramters 〈n〉, 1/k, b and p. This distribution was shown in
Figs 1, 2, 3, where values of nmin = 200 and nmax = 340 were used. As noted
previously, agreement with the NA49 data is exceptional.

The distribution in the event-by-event average transverse momentum, MpT ,
measured by NA49 [1] for Pb+Pb central collisions has been calculated for the
case where the individual particles on a given event are emitted statistically in-
dependently. A similar analysis could not be performed for correlated emission
of particles since no simple analogy of Eqs. 3, 4, 6 exists for this case. The
parameters of the event-by-event distribution are obtained from the means
and standard deviations of the semi-inclusive pT and central multiplicity dis-
tributions quoted by NA49, yielding a distribution in MpT which appears to
reproduce very well the measured distribution. The statistical independence
of the emission of particles on a given event can be seen by the relationship
of the standard deviation of the MpT distribution to its mean (Eqs. 16, 19)
in comparison to the semi-inclusive quantities (Eq. 8), as noted by NA49 [1].
A new test suggested by the present work is that the asymptotic slope of
the MpT distribution (Eq. 15) should be n times the asymptotic slope of the
semi-inclusive pT distribution (Eq. 12).

The present derivation has much in common with the techniques used for ET
distributions [3] as both make use of the elegant properties of Gamma distri-
butions. However there is a significant difference. Analyses of ET distributions
in wounded nucleon models start with a measured elementary multiparticle
ET distribution in p-p or p+A collisions, represented as a Gamma distribu-
tion, and reconstruct the ET distribution for A+A collisions as the weighted
sum of convolutions of elementary Gamma distributions, where the weights
are given by a model. Any correlations in single particle emission for the el-
ementary p-p or p+A process are taken into account by using the measured
multiparticle ET distribution. No attempt is made to derive the elementary
multiparticle ET distribution from the single particle pT spectrum because of
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the large correlations in p-p and p+A collisions. The present analysis is quite
different: the multiparticle distribution in event-by-event MpT for Pb+Pb cen-
tral collisions is derived from the semi-inclusive single particle pT spectrum
for the same sample of events by assuming statistically independent emission
of particles. No model is involved, just a straightforward statistical analysis.
If there were any correlations in transverse momentum emission of particles
on a given event, or two distinct classes of events with different single particle
transverse momentum spectra, the derived distribution would disagree with
the measurement .

Another classical example in nuclear physics which perhaps has more in com-
mon with the distribution of event-by-event average transverse momentum
is the distribution in the time interval between every nth count of radioac-
tive decay, where the probability is exponential for the time interval between
counts[6,7]. Since an exponential is just a Gamma distribution (Eq. 7) with
p = 1, the distribution for the time x between n counts is given by Eq. 9
with p = 1 and b = λ, the normalized probability of decay per unit time.
The reduction, or ‘regularization’, of the relative fluctuations of the counting
rate distribution of a radioactive source when pre-scaled by n illustrates es-
sentially the same effect as the event-by-event average transverse momentum
distribution for independent emission of n particles per event.
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